
SPF: A Middleware for Social Interaction
in Mobile Proximity Environments

Luciano Baresi∗, Laurent-Walter Goix§, Sam Guinea∗,
Valerio Panzica La Manna‡, Jacopo Aliprandi∗, and Dario Archetti∗

∗ Dipartimento di Elettronica Informazione e Bioingegneria
Politecnico di Milano,

via Ponzio 34/5, 20133 Milan, Italy
Email: {luciano.baresi|sam.guinea}@polimi.it

{jacopo.aliprandi|dario.archetti}@mail.polimi.it
§ Econocom-Osiatis,

75 cours Albert Thomas, 69003 Lyon, France
Email: laurent.goix@econocom-osiatis.com

‡ MIT Media Lab, 20 Ames St.,
02139 Cambridge, MA, USA

Email: vpanzica@mit.edu

Abstract—Smart interconnected devices are changing our lives
and are turning conventional spaces into smart ones. Physical
proximity, a key enabler of social interactions in the old days
is not exploited by smart solutions, where the social dimension
is always managed through the Internet. This paper aims to
blend the two forces and proposes the idea of social smart space,
where modern technologies can help regain and renew social
interactions, and where proximity is seen as enabler for dedicated
and customized functionality provided by users to users. A Social
Proximity Framework (SPF) provides the basis for the creation of
this new flavor of smart spaces. Two different versions of the SPF,
based on different communication infrastructures, help explain
the characteristics of the different components, and show how the
SPF can benefit from emerging connection-less communication
protocols. A first assessment of the two implementations concludes
the paper.

I. INTRODUCTION

Smart devices are rapidly and deeply changing our lives.
From smart-phones to televisions, washing machines, coffee
machines, refridgerators, watches, and glasses, communication
is possible at all times and through different appliances. A key
enabler of this revolution has been the availability of com-
munication protocols: from conventional Wi-Fi and 2G/3G/4G
networks to new emerging, connection-less protocols, such as
WiFi-Direct [1] and LTE-Direct [2].

Even if physical spaces are becoming smart spaces, where
people can seamlessly interact —mainly through their mobile
devices— with appliances and other people in the same
area, social proximity has often been neglected and seen as
accidental. For example, commuters still tend to chat with their
friends through well-known cloud-based social networks, and
do not exploit physical proximity to socialize with new people.

This has slowly been changing, and a new breed of social
applications that have physical proximity as a cornerstone

Laurent-Walter Goix and Valerio Panzica La Manna carried out the work
reported here when they were with Telecom Italia, Italy, and Politecnico di
Milano, Italy, respectively.

has started to emerge. FireChat1 is a mobile application that
allows you to chat with everyone around you, even when
there is no Internet connection available. Bizzabo2 is an
event management platform that allows event organizers to
maximize attendee engagement with one-on-one mobile and
proximal messaging. Another experiment in this direction is
TrainRoulette [3]. It studies the impact that social mobility
has on the travel experience, with a focus on anonymous social
interactions between nearby commuters.

Both industry and academia have proposed interopera-
ble communication layers and middleware infrastructures that
could be used to create these kinds of applications. For exam-
ple, solutions like AllJoyn [4] and Intel CCF [5] can be used
to create smart spaces by letting participants share, discover,
and exploit available functionality (services). However, the
focus has been —until now— on managing the heterogeneity
of communication protocols and operation systems, but not
on social proximity. These approaches still do not see social
proximity as an added value, and thus as an enabler for
dedicated services; it is neglected and replaced by the idea
that one can always be connected to everybody.

This paper takes a new viewpoint, one that wants to exploit
social proximity as an added value. We advocate that modern
spaces should not only be smart, but social as well. The social
dimension matters, and it should be used to exploit special-
purpose services, or to customize existing ones to special
needs and contexts. We believe that user-centric interactions
are key to blending new technologies with the identities of the
different individuals. As a result, each individual can exploit
technology-mediated interactions to show different identities
and exploit different services.

The idea of a social smart space is fostered by the creation
of a Social Proximity Framework (SPF)3, as a means and
mediator to support and ease the creation of smart spaces

1https://opengarden.com/apps
2https://www.bizzabo.com
3The Social Proximity Framework (SPF) is an open source project available

at https://github.com/deib-polimi/SPF.

with a social flavor, and where physical proximity matters. The
SPF allows people, spaces, and appliances to be dynamically
discovered in proximity, on the basis of revealed information
that can be customized according to the context and to privacy
settings. The SPF is currently available for Android devices,
in two different implementations: one based on the AllJoyn
middleware [4] and one implemented directly on top of WiFi-
Direct [1]. The two implementations were chosen so that we
can understand and explain how social smart spaces can benefit
from novel connection-less communication protocols.

The SPF contributes to the creation of social smart spaces
in different ways. It facilitates, speeds up, and reduces the
complexity of the development of novel proximity-based
services or apps4 by abstracting reusable functionality. The
SPF provides well-defined interfaces to let devices (people)
advertise and share identities, and exploit each other’s services.
The SPF facilitates the dynamic deployment of new services,
and thus the continuous modification of existing spaces to take
into account new participants and needs. User-oriented appli-
cations, at the same time, can exploit a clear, privacy-friendly
solution that supports different profiles and permissions based
on habits, contexts, or place of use.

The rest of the paper is structured as follows. Section II
exemplifies the idea of social smart space and defines the
requirements for a social proximity framework. Section III
describes the general architecture of the SPF. Section IV
describes the two versions of the SPF we have implemented.
Section V proposes a first assessment of the framework.
Section VI discusses related work, and Section VII concludes
the paper.

II. REQUIREMENTS FOR A SOCIAL PROXIMITY
FRAMEWORK

From a business standpoint, various discussions with po-
tential customers and partners allowed us to identify concrete
application scenarios that would benefit from a common
framework able to manage social interactions and identity
in proximity. These refer mainly to owners of small, local
shops, restaurants, or bars and to mobility spaces managed
by transport operators.

Social Networking in Proximity (SNiP) is a generic use
case that allows the users in a physical space to interact with
each other on the basis of common interests, or goals. The
SNiP service can be customized for different domains and
contexts. On a weekday professionals can advertise their skills,
to receive offers related to open positions. At fairs and large
exhibitions, customers who are interested in particular products
or businesses can be discovered by related companies and
managers. During a party or a leisure trip users can discover
and meet new people on the basis of common recreational
interests or can self-organize (e.g. for ride sharing planning,
collaborative problem-solving related to a disruption or an
emergency, etc).

A SNiP profile usually consists of a username, a picture,
and a set of arbitrary/predefined categories that represent skills,
interests, or goals. Such data can be imported —and maybe

4The words service and app(lication) are often used as synonyms throughout
the paper.

integrated— from traditional, cloud-based social networks, or
remain local. In a purely proximity-based context, users can
advertise the profiles stored on their devices, and then be
discovered by the others in the surrounding space. There would
be no involvement of cloud-based technologies, neither would
there be any GPS-based proximity calculation —that are not
available in several contexts such as on transportation means,
in indoor spaces, or when roaming. The owners of the smart
space may also decide not to provide any WiFi connectivity
to their customers, and thus any (social) interaction should
be routed through local, ad-hoc solutions. Furthermore to
preserve their privacy and security, users may decide to only
advertise parts of their profiles, or to manage multiple views
(personas) on them based on their mood or context. Once users
discover interesting profiles, they can connect to each other and
exchange activities such as messages, images, and other media
content, directly.

Taking a more retail-centric approach, the owners of
shops, bars, and restaurants may be keen on tailored and
local advertisements on the basis of the preferences of their
customers. As an example, users should be able to exploit
the framework to declare their interest in receiving coupons
and offers related to “Belgian Beers”. Shops and pubs selling
Belgian beers can use the framework to discover customers
interested in their products in proximity, and perform targeted
marketing campaigns. They may provide coupons, which be-
come available only when a user enters the shop, or provide
additional services and discounts for frequent users. When
the advertisement is issued, the framework should perform
multiple, and possibly periodic, searches for profiles that match
the advertisement. The matching is carried out by comparing
user-provided profiles and the business goal of the space owner
(i.e., the profile of the user associated with the commercial
activity). Every matching profile (client) then receives a push
notification with the targeted advertisement.

The idea of proximity-based marketing campaigns is not
new. As an example, recent solutions have involved the use of
iBeacons or other indoor positioning systems, installed in malls
and shops, to discover the presence of the customers within
the store. However, such services do not natively support
social identities, profiles and exchange of activities. They also
traditionally require ad-hoc cloud-based solutions to generate
personalized advertisements. A sound, smart framework should
simplify these activities by adding the social layer to the smart
space.

A. Requirements for the SPF

On the basis of the scenarios described above we now
summarize the main requirements a novel user- and context-
aware framework needs to satisfy to support social interaction
in proximity.

Profile Management: The framework must allow for the
creation and management of a social profile stored on the user’s
device. A profile contains a user identifier, a picture, and a set
of interests. As privacy options a user identifier can be: (i)
anonymous and not discoverable in public; (ii) public, e.g.,
a name that is imported from a traditional cloud-based public
social profile; (iii) opaque, which means that it can be mapped
to a real identity by acquaintances, for example, but it cannot
be recognized by unknown users.

Search: the framework needs to support profile discovery
(search) in proximity. The discovery should be based on
querying the profiles that are in proximity, and it should
provide a mechanism for filtering profiles against matched
interests. Discovery can be fully peer-to-peer amongst users
or it may be mediated by a centralized device installed on the
smart space (for example in case of a shop owner).

Advertisement: profile advertisement should be performed
in different ways based on privacy settings and context. A
profile can be partially or totally advertised or provide different
information on the basis of the context or of the specific
application used. Advertisements can also be associated with
specific services, or specific group of users.

Services: The framework should support extra customizable
services related to social interaction, which could be made
dynamically available to all the applications relying on the
framework.

Activities: Similarly to traditional social networks, the
framework should support different types of common activities
such as textual posts, media content, and push notifications.

Security: The framework should provide a means to control
how the information that is saved in a profile is shared with
applications, and also a means to prevent unauthorized access
to specific features of the framework.

The framework should also provide high-level and ex-
tensible communication facilities to support the interactions
among users in proximity. The communication facility should
mask the underlying communication protocols adopted for
supporting the interaction and the devices associated with the
profile. Specifically, it should support both ad-hoc proximity
and infrastructure-based networks to better fit the technical and
business constraints of the (owner of the) smart space.

These requirements represent open research questions. The
solutions could be borrowed from existing systems, but they
should be tailored to the context of proximity-based commu-
nication and mobile platforms. The SPF we propose addresses
these issues.

III. SOCIAL PROXIMITY FRAMEWORK

Our Social Proximity Framework (SPF) aims to ease the
development of applications that want to exploit social interac-
tions as key enablers for dedicated data exchanges and service
provisioning.

Figure 1 shows a high level overview of the framework,
as deployed onto two connected devices. The SPF consists
of two layers: the SPFCoreLayer and an underlying Com-
municationLayer. The former is responsible for mediating all
social interactions, while the latter is responsible for providing
inter-device connectivity. The SPF was architected to make it
pluggable with respect to different communication layers. In
fact, Section IV discusses two diverse implementations, one
based on the AllJoyn middleware [4] and one developed on
top of the Android implementation of WiFi Direct [1].

To ease its distribution, the SPF is packaged into a single
Android application called SPFCoreApp. This application
contains the actual framework, and an accompanying default
graphical user interface. This interface allows one to configure

the various aspects of the framework, such as the user’s social
profile, rules for accessing local and/or remote profiles, etc.

Applications that reside on the device, and that want to
make use of the capabilities offered by the SPF, can bypass the
UI and interact directly with the SPFCoreLayer. This layer,
in fact, exposes a programming interface for inter-app commu-
nication that has been defined using AIDL (i.e., the Android
Interface Definition Language). To simplify the development of
SPF-enabled apps, we also provide an SPFLibrary, which can
be included directly into any app. It offers all the capabilities
provided by the SPF, and hides the intricacies of the inter-app
communication that occurs between the app being built and
the SPFCoreLayer.

SPF Core App

SPF Core Layer

Communication
Layer

SPF Library

SPF-enabled
App

SPF Library

SPF-enabled
AppSPF

Device
SPF Core App

SPF Core Layer

Communication
Layer

SPF Library

SPF-enabled
App

SPF Library

SPF-enabled
AppSPF

Device

Fig. 1. SPF-enabled App Interactions.

Figure 2 provides a more in-depth representation of
the architecture of the SPF on a single device. The
SPFCoreApp provides two interfaces. We have already
discussed LocalAppInterface for inter-app communi-
cation. RemoteSPFInterface, on the other hand, is
used to connect the SPFCoreLayer to the underlying
communication middleware. It makes use of a generic
MiddlewareInterface, which must then be properly im-
plemented by the underlying middleware directly, or through
a series of MiddlewareAdapters.

SPF Library

SPF-enabled
App

App Process

Profile

App
Permissions

Privacy
Settings

SPF
Internal
Modules

Middleware Interface

Middleware Adapters

Communication
Middleware

SPF Core App Process

Network

Local A
pp Interface

R
em

ote SPF Interface

Fig. 2. Architecture of the SPF.

Within the SPFCoreLayer we have the software modules
that provide the six main capabilities of SPF: Profile Manage-
ment, Search, Service Registration, Advertisement, Activities,
and Security. We also have data storage, where we store
profiles, application permissions, and privacy settings.

A. Profile Management

The SPFCoreApp allows users to store personal profiles,
whose information model is inspired by OpenSocial5, that
cover both personal information and additional social data.

5http://opensocial.org

The data are stored as a simple collection of fields; they can
be modified directly by the user through the UI, or by local
or remote applications according to specific privacy settings,
which we will discuss in more detail in the upcoming section
on security.

The SPF introduces a means to diversify the information
that is provided to each application. This diversification goes
under the name of personas. A persona is a named collection of
profile fields; the main novelty is that the SPF allows different
personas to assign different values to the same fields. As an
example, the interests profile field describing user interests
may have different values in the different personas.

The same person (device) can exploit different personas
according to his/her needs. Since each application is associ-
ated with a specific persona, one can create, for example, a
business-oriented persona, and differentiate it from one that is
used for more “personal” applications. The creation, deletion,
and management of the personas is achieved through the
SPFCoreApp.

B. Search

Search is the mechanism that applications use to discover
remote SPF instances. Searches are performed through the
exchange of broadcast messages that leverage the communi-
cation primitives provided by the underlying communication
middleware, as we will discuss in Section IV.

Searches consist of simple queries that predicate over spe-
cific profile fields. Empty queries return all the SPF instances
that are in the proximity of the query issuer. If one wants
to limit the query to a specific persona, this can be achieved
by having the query contain the particular identifier of that
persona. Search queries also require the specification of a
search duration and a search frequency. This way the query
can be periodically re-iterated for the entire specified duration.
This is important since the search results will change as the
space and location of the particular device change. Moreover,
SPF supports multiple concurrent searches, and guarantees
real-time updates to the search results.

C. Advertisement

Advertisement is the feature that allows users to advertise
their profiles. Advertising is tied to the life cycle of the SPF-
CoreApp, meaning that it is possible to repeatedly broadcast
specific profile personas as long as the SPFCoreApp network
resources are active.

Advertisement can be useful in a scenario involving tar-
geted marketing campaigns (as described in Section II). In
this scenario, profile information, advertised by the user’s app,
can be captured by a store’s SPF-enabled service, which can
then proceed to send targeted coupons/offers back to the user.

To react to the reception of an SPFAdvertisement, the SPF
introduces the notion of SPFTrigger. An SPFTrigger consists
of an event/condition/action (ECA) rule. Events and conditions
are expressed as SPFSearch queries, while actions can be
triggered both locally and remotely, and can be of two types:
SPFActionIntent and SPFActionSendNotification. In the former
case, an actual Android Intent is broadcasted and received by

the device that registered the trigger, while, in the latter case,
a simple textual notification is shown to the recipient.

An SPF trigger can also define a sleep period, that is an
interval in milliseconds within which no other actions should
be performed, and whether the action should only be executed
once in the SPF-enabled app’s life cycle (i.e., whether the
action is one shot).

In other words, the advertising feature allows for the defi-
nition of “persistent queries”, which trigger actions whenever
a match is found. This makes development much easier, since
there is no need for the application developer to deal with
background SPFSearches. Leaving this task to a shared SPF
instance allows for a more optimized use of the resources.

D. Services

SPF, however, is not just about sharing profile information.
It is also about enabling social interactions. This means that
SPF-enabled applications are allowed to invoke functionality
(services) provided both locally and by other devices. This is
achieved through the notion of SPFService.

An SPFService is defined by a Java interface
specified through a dedicated annotation (@SPF-
ServiceInterface), and contains various kinds of
meta-data, such as the package identifier of the app that has
registered the service, its name, and its version.

Service registration starts when an SPF-enabled app makes
a call to its local SPFLibrary to register a new service.
This kicks off a two-step process: a validation step, which
is performed locally by the SPFLibrary itself, and an actual
registration step, which is performed by the SPFCoreApp
running on the device. The validation step checks the interface
being registered to see if its methods use valid input and return
parameters. The registration step adds the service to a lookup
table that is then used during searches. Services are identified
by the unique Google Play Store identifier of the app and their
name.

To dispatch incoming requests to an SPFService, the SPF-
CoreApp needs to be able to connect to the application that
registered the service, even if that application is not running at
that time. This is achieved through Android Services, a solu-
tion that allows application components to perform background
operations. This is why one must also provide a suitable
Android Service when registering an SPFService.

The invocation of an SPFService is made through the SPF-
CoreApp, which performs a local SPFService lookup. When
the service is found, the SPFCoreApp binds to the third-party
app that exposes the service, and the actual service execution
can take place. How remote binding is achieved depends on
the nature of the underlying communication framework. We
refer the reader to Section IV, where this is explained in
detail. Finally, access to SPFServices is regulated by specific
access rules. This will be discussed in the upcoming section
on security.

E. Activities

Activities are intended as means to simplify the develop-
ment and integration of typical well-known social function-

ality. SPFActivities are inspired by Activity Streams6. In this
specification, activities are used as a semantic description of
potential or completed actions. Concrete examples of Activities
are, therefore, the posting of a message on a timeline, the
posting of a picture on a chat, etc.

SPFActivities have a standard set of data that are automat-
ically injected by the SPF. They have information about the
sender and the receiver, the date and time at which the action
is performed, and (possibly) the location where it occurs.
An SPFActivity also contains a “verb”, that is, a string that
identifies the type of social action that is being performed.
Examples of verbs are post and share that correspond to
the common functionality of posting and sharing content in
traditional social networks.

SPFActivities are used in two different ways within the
SPF: as a means to enrich the parameters of an SPFService
method, and as a means to provide “lower-level integration”.
This latter case means being able to interact with an application
without knowing about its service interface. This is supported
by an automatic verb-routing mechanism, which dispatches
requests based on the verb used in the SPFActivity. The verb-
routing mechanism provides a means to support interoperable
and application-agnostic social interactions. For example, an
SPFActivity with verb post sent by an application can be
received by a different application. To enable this kind of in-
teraction, a developer must enrich the SPFService’s definition
with annotations that state that it can also be considered an
SPFActivity consumer, for certain verbs.

F. Security

Profile management at the application level, which is what
happens with personas, is not always enough. Sometimes the
way the information is socially shared depends on the level
of familiarity the user has with another person, regardless of
the app being used. This is why, on top of personas, the SPF
provides a “circles” based clearance system, similar to the one
provided by Google+.

The clearance system allows SPF users to categorize the
people they interact with into circles, and then limit the access
to specific profile fields only to some circles. This is achieved
through a symmetric token mechanism. When two SPF users,
let us say users A and B, come into proximity of one another,
one user (e.g., A) sends a contact creation request to the other
(e.g., B). Before the request is actually sent, user A selects
the circles user B will be placed in, using the SPFCoreApp.
This results in the creation of a unique token for users A and
B that is stored locally within user A’s SPF instance. This
token is then sent as a part of the contact creation request.
Upon reception, a notification in user B’s SPFCoreApp tells
the user that s/he must review the request, and confirm or deny
it. If user B accepts the request, s/he is then asked to identify
the circle(s) within which user A should be placed. Finally,
the token is stored locally in user B’s SPF instance as well.
After a successful contact creation process, both parties hold
the shared symmetric token. At this point, whenever an SPF
instance contacts another SPF instance to request some profile
information, the token must be passed as a part of the request.

6http://www.w3.org/TR/activitystreams-core/

This allows the recipient to verify whether that specific person
actually has access to the profile information.

How SPF-enabled applications access SPF capabilities, on
the other hand, is managed in a way that is similar to how
OAuth works in common Web applications. The first time an
SPF-enabled application is run on a device, a graphical user
interface is presented to the user. This UI declares what SPF
capabilities the SPF-enabled app would like to access, and asks
the user for explicit permission.

To avoid granting access to malicious apps that may at-
tempt to connect to the SPF, the app must present its “unique”
Google Play Store identifier. Only if the credentials are valid
will the access request be allowed to proceed, and will the
graphical UI actually be presented to the user.

The SPF capabilities that an app can request access to
are: (a) registration of SPF services for other applications, (b)
initiation of a proximity-based search, (c) execution of services
published locally by other apps, (d) execution of services
published remotely by other apps, (e) reading of a local profile,
(f) reading of a remote profile, (g) writing on a local profile,
and (h) access and use of the SPF Advertisement facilities.

As soon as access is granted, a token is generated for the
requesting application. From this point on, all the requests to
the SPF made by that app must include this token to let the SPF
check whether it has been granted access to the capabilities it
is attempting to use. Furthermore, the SPFCoreApp contains
a list of all the permissions that have been granted to the other
registered apps, so that the user can modify them according to
his/her needs.

IV. IMPLEMENTATION

As we have seen, the SPF provides developers with many
different tools that make the development of social proximity
apps much easier. Tools like profile management, search,
and service registration are possible thanks to an underlying
communication middleware that deals with, and hides, the
complex intricacies of device connectivity.

We designed the SPF to ease the adoption of different un-
derlying communication infrastructures. This section discusses
the two implementations we have created. The first is based
on AllJoyn [4], while the second is built directly on top of the
Android implementation of WiFi Direct [1]. While AllJoyn
currently requires the presence of a fixed WiFi Access Point,
WiFi Direct was chosen as a way to test the SPF in the absence
of a networking infrastructure. A first detailed comparison of
these two implementations is presented in Section V.

A. AllJoyn Implementation

AllJoyn is an open source project, initiated by Qual-
comm and currently managed by the AllSeen Alliance, which
provides a software framework for enabling interoperability
among various types of devices. Since it focuses on scenarios
such as connected homes and automotive, participating devices
can go from smart-phones and tablets to low-level appliances
and media equipment.

AllJoyn is cross-platform, cross-brand, and supports differ-
ent kinds of connectivity means (e.g., Bluetooth, WiFi, etc.).

It is not a low-level communication protocol, but a set of
services that allow developers to focus on higher-level prob-
lems. Some of the services it provides are discovery, capability
broadcasting, remote procedure call, interface sharing, etc.
These features made it a strong candidate for implementing
the underlying communication layers of the SPF, and was our
first implementation choice.

AllJoyn Bus

+ onSearchSignalReceived()
+ onSearchResultReceived()
+ onInstanceFound(SPFRemoteInstance)
+ onInstanceLost(id)
+ executeService(request):response

...

<<interface>>
InboundProximityInterface

+ start()
+ stop()
+ sendSearchSignal(query)
+ sendSearchResponse(response)
+ registerAdvertising(profile)

...

<<interface>>
ProximityMiddleware

+ executeService(request):response
+ getProfileFields(fields):profileContainer
+ sendNotification(message)
+ sendContactRequest(request)

...

<<interface>>
SPFRemoteInstance

AllJoynRemoteInterfaceImpl AllJoynProximityMiddleware

<<interface>>
AllJoynRemoteInterface Bus Handler AllJoynRemoteInstance

Server Bus
Attachment

Client Bus
Attachment

Fig. 3. Plugging AllJoyn into the SPF.

Figure 3 shows how AllJoyn implements the
three framework-agnostic interfaces that make the
SPF pluggable with respect to the underlying
communication middleware: ProximityMiddleware,
InboundProximityInterface, and SPFRemote-
Instance. The first interface is used to manage the life
cycle of the connection that is made to the underlying
communication middleware. It is also used to initiate SPF
capabilities that require a connection, such as searches and
advertisements. The second interface is used to manage
requests that are received from the underlying communication
middleware. In particular, it provides methods that allow the
SPF to respond to search requests, advertisement signals,
notifications about SPF instances being found or lost, etc. It
also manages incoming service execution requests. The third
and last interface is used to manage outgoing connections to
other SPF instances. In particular, it allows the SPF to make
calls to remote SPF services, to request profile information,
and to send contact creation requests.

The AllJoyn system consists of a virtual bus that connects
distributed AllJoyn daemons that are installed onto the partic-
ipating devices. Every application that connects to the virtual
bus does so via a Bus Attachment. In our SPF implementation
the class that directly interacts with the AllJoyn bus is called
BusHandler. It is an Android Handler that runs in its own
Looper thread, and provides asynchronous communication be-
tween AllJoyn and the upper layers of our implementation. The
Bus Handler connects to the device’s AllJoyn daemon through

two AllJoyn Bus Attachments: ClientBusAttachment
and ServerBusAttachment. The first is used to interact
with remote SPF instances, while the latter for managing
incoming requests.

The complete details of how AllJoyn is used to implement
all of the SPF’s capabilities would be too much for this paper.
We will, however, focus briefly on how discovery is achieved
in AllJoyn, and on how we used it to implement the search
functionality. The reason for concentrating on discovery and
search is that it will also allow us to highlight the key problems
and differences that arose when we developed our WiFi Direct
based implementation.

AllJoyn provides a discovery feature that is based
on the fact that Bus Attachments can advertise soft-
ware components on the network using unique identi-
fiers (e.g., it.polimi.spf.<name>). Other Bus Attach-
ments, on the other hand, can express interest in the ar-
rival or departure of components that satisfy a given pre-
fix (e.g., it.polimi.spf). This discovery mechanism
is always active. This means it continuously produces ar-
rival and departure event messages that are managed by
methods onInstanceFound and onInstanceLost of
class InboundProximityInterface. The execution of
these methods leads to the creation or destruction of
AllJoynRemoteInstance objects. These are the actual
proxy objects that are used to achieve remote SPF interactions.
They are lazily initialized. At the beginning they are empty
objects that only contain the remote instances’ identifiers;
however, when the framework needs to initiate an actual
exchange, an appropriate AllJoyn session is created.

On top of this discovery mechanism we have our search
mechanism. Search is the application-level capability that
third party apps use to discover other SPF instances. It is
implemented using AllJoyn signals, i.e., unreliable broad-
cast messages that are sent over the virtual bus. These
signals are captured and managed by the SPF instances
that are on the bus, through method onSearchSignal
of class InboundProximityInterface. Every re-
mote instance that satisfies the query issues a search
result. These results are received by the issuer of
the search, through method onSearchResult of class
InboundProximityInterface. The search result con-
tains the remote application’s identifier, which allows the
SPF to find the corresponding AllJoynRemoteInstance
object, created through the AllJoyn discovery mechanism,
that it should use from that point on to achieve the remote
interactions.

Since AllJoyn discovery is always on, its results are contin-
uously fed into SPF Search, allowing the search mechanism to
be continuously up-to-date with respect to the actual situation
seen on the virtual bus.

B. WiFi Direct Implementation

Using the same three high-level SPF interfaces, we set out
to implement a second version of the SPF that substitutes
AllJoyn with WiFi Direct. WiFi Direct offers a lower-level
network abstraction with respect to AllJoyn. It is a standard
that allows enabled devices to connect and communicate using
WiFi speed, even in the absence of a central access point.

AllJoyn requires an existing IP local network and as such
does not fully support Wifi-Direct unless a connection has been
already established.

WiFi Direct works by creating groups of connected devices.
When a group is created, a single device is elected to be the
group owner. This means that it is responsible for creating a
Soft(-ware) Access Point to which all the other components
may connect. Although it provides some high-level services
such as the discovery of nearby devices, the actual communi-
cation is still based on standard socket technology.

Unfortunately we soon discovered that WiFi Direct pre-
sented some constraints that did not make it a good candidate
for implementing the SPF. In particular, it made it hard to
replicate the collaboration between discovery and search that
was so successful in the AllJoyn implementation.

A first constraint that the Android implementation of WiFi
Direct has is that, in general, peer discovery is extremely
slow, taking up to 60 seconds in some cases. This is due to a
constant defined at the operating system level that limits the
updates of the list of available peers. A second, and even more
important constraint, is that it is impossible with WiFi Direct’s
discovery API to update the information being used to perform
service matching. When a WiFi Direct enabled device wants to
register a service for discovery, it needs to provide a HashMap
containing information about that specific service. The Android
implementation of WiFi Direct then uses callback methods to
notify an application of an available service. Unfortunately, this
HashMap cannot be updated without re-registering the service,
and cannot therefore be used as a means to spread the query
signals like we did in the AllJoyn implementation.

For these reasons we decided to build an additional inter-
mediate middleware layer, to be placed between WiFi Direct
and the SPF, called WFD 2 SPF. The goal was to make WiFi
Direct more suitable for our uses.

Our solution is based on the construction of an overlay
network driven by WiFi Direct’s notion of groups. We build a
star-topology overlay whose root node is a WiFi Direct group
owner. All other group members are connected solely and
directly to the group owner through a socket connection. This
allows us to improve peer discovery by having the group owner
dispatch instance discovery messages whenever a new SPF
instance enters or leaves the network: this is easy for the owner
to detect. It also allows us to improve general messaging,
since the group owner can simply route the messages to their
intended destinations.

WFD 2 SPF was also used to provide higher-level com-
munication abstractions for the SPF. In particular, we in-
troduced three communication primitives: one for sending
broadcast messages, one for sending unicast messages, and
an RPC-friendly primitive for sending a message and waiting
for its response.

Figure 4 illustrates the architecture of WFD 2 SPF. At
the core of our implementation lies class GroupActor.
This is an abstract class that contains the logic that is
common to group owners and regular group members. In
particular, it contains methods to connect and disconnect, to
perform messaging, and to respond to incoming messages.
This class is extended by GroupClientActor, which adds

+ onRequestMessage(msg):WfdMessage
+ onMessageReceived(msg)
+ onInstanceFound(id)
+ onInstanceLost(id)
+ onMiddlewareStop()

<<interface>>
WfdMiddlewareListener

+ sendMessage(msg)
+ sendBroadcastMessage(msg)
+ sendRequest(msg):WfdMessage
+ connect()
+ disconnect()

WifiDirectMiddleware

+ connect()
+ disconnect()
+ getId()
+ sendMessage(msg, targetId)
+ sendBroadcastMessage(msg)
+ sendRequestMessage(msg_:WfdMessage
onResponseReceived(msg)
handle(msg)
deliverToApplication(msg)

<<abstract>>
GroupActor

<<interface>>
GroupActorListener

- mSocket:Socket

GroupClientActor

- establishConneciton()
- enterReadLoop()
+ sendMessage(msg)

GroupOwnerActor

- route(msg)
- sendBroadcastMessage(msg)
- sendUnicastMessage(msg)
+ onClientConnected(id, client)
+ onClientDisconnected(id)
- signalInstanceLossToGroup()
- signalInstanceFoundToGroup()
- signalGroupToNewClient()

- mSocket:Socket

GOInternalClient

- waitForConnection()
- attachToGroupOwn
- enterReadLoop()
+ sendMessage(msg)

0..1

0..*

Fig. 4. Design of the WFD 2 SPF middleware.

the methods needed by regular group members to establish
a connection with the group owner, and to send it messages.
Finally, we have class GroupOwnerActor. It also extends
GroupActor, and adds the methods that are specific to the
group owner, such as those needed to route messages, and
to react to clients that connect and disconnect to the group.
WifiDirectMiddleware contains all the logic needed to
coordinate discovery, advertising, and the creation of the star
overlays, while GOInternalClient contains and manages
the socket that connects a simple group member to the group
owner.

C. Lessons Learned

AllJoyn requires that all interacting devices be connected
on the same local area network. This means that the SPF
cannot be used in scenarios where a common Wifi network
is not available, e.g., scenarios involving user mobility. More-
over, due to an Android limitation according to which it is
impossible to activate both the Wifi and the 3G/4G networks
at the same time, if the Wifi network being used by AllJoyn
does not provide Internet access, the user will be able to use
the features of the SPF but will not be able to connect to the
Internet.

The Wifi Direct version of the SPF overcomes the above
limitations. However, while implementing this version, we
also discovered that WiFi Direct has important scalability
issues. The maximum number of simultaneous peers that can
be managed within a single group is very low (e.g., seven
or eight). We attempted to solve this by having lazy peer
connections to groups. In practice, the idea was to always keep
the amount of peers that are actually connected to the group

below the actual upper bound, and perform the connections
on demand. This however would have required dynamic and
fast peer discovery, which was exactly what we did not have
when we implemented the search functionality. Since the star-
topology overlay is based on the WiFi Direct groups, our
solution has the exact same scalability issues.

These experiments have informed our future work. In-
deed, we will continue to investigate the use of the SPF in
infrastructure-less scenarios, by studying the adoption of LTE
Direct and by introducing new and more complex overlay
topologies that could help us bypass the current limitations
of WiFi Direct.

V. EVALUATION

This section presents the results of the experiments we
carried out to evaluate the SPF. First, we evaluated the ef-
fectiveness of the framework in facilitating the development of
new services/apps. Then, we evaluated its performance and the
delays it introduces. Further evaluation is part of our current
and future work.

A. Code Quality

The first experiments aimed to evaluate the impact of the
SPF on the complexity of the code of a new proximity-based
service. As example service we considered a chat app and
compared four different implementations, that use or do not
use the SPF.

To evaluate the SPF-AllJoyn implementation, we compared
the existing chat application bundled as an example in the
AllJoyn SDK with a similar application, which we developed,
based on SPF-AllJoyn. The two apps offer similar, but not
identical, behaviors: the chat built on top of pure AllJoyn offers
a group based chat, where users can create groups, join them,
and send messages to all the people in the same group. The
chat we built on top of SPF-AllJoyn only creates a group on the
basis of proximity and sends messages to all current members.

To evaluate the SPF-WiFi Direct implementation, we com-
pared the WiFi Chat app bundled in the Android SDK samples
with a new app, which we developed, where the connectivity
layer was replaced by a new one based on SPF-WiFi Direct.
For a more accurate comparison, the part of the code related
to the application’s UI was not modified.

To evaluate the code of the different applications we used
SonarQube7, an open source platform to measure code quality.
We focused on two important metrics: the overall number of
lines of code, and the cyclomatic complexity, which counts
the number of different paths in the source code and provides
a quantitative measure of the complexity of the code. A high
cyclomatic complexity is not an issue per se, as it depends on
the size of the program. However, it can be used to compare
two applications that implement the same functionality, since
a simpler implementation is easier to debug and maintain.

Figure 5 shows the results of the experiments. Both for
the Wifi-Direct and AllJoyn implementations the adoption of
the SPF resulted in a reduction of 50% of both the lines of
code, and complexity. It also suggested that developers need to

7http://www.sonarqube.org/

(a) Lines Of Code

(b) Cyclomatic Complexity

Fig. 5. Results on code quality.

implement and maintain less and simpler code, and they can
thus spend more time on other core parts of their applications.
Note that the improvement provided by the framework is
related to the network layer and clearly shows how Wifi-Direct
and AllJoyn, without additional layers, are too general-purpose
to be directly used for implementing social-proximity services.

B. Performance

We then evaluated how the introduction of the SPF affected
the performance of the apps that rely on it. The experiments
aimed to collect the response times of different implemen-
tations of the same service/app that differ for the adopted
communication layer.

More in detail, we created a ping service that sends
requests and waits for acknowledgements from the receiver.
The different sizes of the payload were obtained by providing
a random string obtained by concatenating a varying number
of characters. We collected the response times on two Samsung
Galaxy S4 smartphones: one acting as server and the other one
as client. The client phone was in charge of performing service
invocations, one after another, by varying the size of the pay-
load. The experiments considered five different configurations
that differed in the used communication middleware: SPF-
AllJoyn, SPF-WiFi Direct, Alloyn alone, WiFi Direct alone,
and a local-only implementation, that is, a configuration that
only used inter-process communications on the same device
without remote invocations.

Figure 6 shows the results of the experiments. If we com-
pare the response time of a local transaction against the one of

(a) SPF-AllJoyn

(b) SPF-Wifi-Direct

Fig. 6. Results on response times.

a remote service invocation, as expected, the impact of inter-
process communication is negligible with respect to the dura-
tion of a network transaction. If we analyze the results with and
without the SPF, we discover that the current implementations
of the framework cause extra delays on the response time of up
to 50ms for the Wifi-Direct implementation and up to 200ms
for the AllJJoyn implementation. Traceview by Android helped
us understand that the delays are mainly due to the serialization
and deserialization of message contents. Most of the time spent
in an SPF invocation is spent on parsing the received message,
which is serialized as a JSON object. The difference between
the response times of the two configurations with the SPF is the
following: the WiFi Direct-based implementation performs the
JSON serialization and deserialization within the middleware,
while the AllJoyn-based implementation does it on top of the
middleware.

Based on the same ping service described above, we
also performed an additional experiment to evaluate how the
framework is able to handle concurrent remote invocations
that are required especially in scenarios where multiple user
devices access at the same time the same service: for example,
one of those provided by a device associated with a smart
space. In this case, we found that the framework suffers
scalability problems due to the intrinsic limitations imposed by
the Android IPC (Inter-Process Communication) framework.

Indeed, as described in the API reference documentation, the
arguments and return value of a remote procedure call are
stored in a buffer that has a limited fixed size of 1Mb; this
buffer is shared among all the transactions in progress for the
process handling the remote invocations. This means that even
if an individual transaction has a moderate size, it may fail be-
cause of the load of the system. The problem can be overcome
by synchronizing remote invocations through a queue. For the
same reason, currently a single remote invocation must have a
payload that does not exceed the size of the buffer imposed by
Android. We conducted a set of stress tests by sharing media
contents. The usual messages and pictures used on the web
and on traditional social networks do not suffer this problem.
However the problem occurs when the payload contains a large
amount of data, such as high-resolution pictures or videos. As
future work we will address the performance overhead due to
serialization and we will extend the framework by providing
dedicated APIs for large data transfers.

VI. RELATED WORK

The high availability of smart devices has led to a recent
proliferation of different approaches that provide abstraction
layers to support proximity-based communication and service
provisioning [4], [5], [6], [7], and mobile social computing [8],
[9], [10], [11], [12], [13], [14], [15] (described in a survey
paper [16]).

AllJoyn [4], as described in Section III, provides a cross-
platform middleware for connecting a wide variety of smart
devices. Peers in AllJoyn are applications —and not devices—
that interact with each other by leveraging a shared distributed
bus architecture. The architecture of AllJoyn is a backward
compatible extension of D-Bus, a Linux inter-application com-
munication protocol that favors interoperability, re-usability,
and security for various language bindings [17]. Although
the middleware is flexible and supports different application
domains, higher-level services focus on IoT applications and
leave the burden of managing social interaction to the devel-
opers of specific applications. The introduction of the SPF
facilitates the work of developers and favors the creation of
new, more sophisticated social proximity services, also on top
of AllJoyn.

ShAir by MIT Media Lab is another promising middle-
ware [6]. It differs from AllJoyn in the possibility of creating
opportunistic proximity-based networks that can automatically
adapt when new devices appear or existing ones disappear [18].
As for AllJoyn, the social interaction is currently not provided.
The integration of the SPF with ShAir can then be beneficial
for the development of social proximity services in highly-
dynamic spaces such as those in public transportation.

Intel Common Connectivity Framework (CCF) is a pro-
prietary middleware developed by Intel Corporation providing
a cross-platform transport-neutral proximity-based connectiv-
ity [5]. Intel CCF includes many of the features provided by
AllJoyn, and it also includes the notion of user identity for
service advertisement and discovery. Intel CCF proposes a
first attempt to introduce user identity as a first-class object.
However, the social profile proposed by the middleware is
limited to mainly a username and an avatar. Preferences
and interests are not supported and thus they cannot be

exploited for discovery. Moreover, the identity management is
centralized on a single proprietary cloud-based solution. This
choice precludes the possibility of using CCF when no Internet
connection is available.

Crossroads [19] is a framework proposed by Microsoft
Research for developing proximity-based social interactions.
The framework shares with the SPF the same problem but it ad-
dresses it from a different perspective. Indeed, the framework
works at network level and focuses on energy efficiency, topol-
ogy robustness, and group dissemination load. MobiClique [9]
is another middleware that leverages the social profiles exposed
by mobile devices via bluetooth to build and maintain an ad-
hoc network to provide users with the reliable exchange of
contents. Differently from these works, the SPF relies on an
abstract communication layer and focuses on providing higher-
level primitives to develop diverse social-proximity services.

As the SPF, MobiSOC [14] is a middleware that promotes
the social interaction among mobile devices. The focus of the
middleware is to provide a shared social state of all the users
in proximity. However, the proposed approach requires the
presence of regular servers distributed over the space where
thin mobile clients can interact with. The SPF, and especially
its WiFi-Direct implementation, relies on a lightweight com-
munication layer that does not require centralized solutions.

VII. CONCLUSIONS AND FUTURE WORK

This paper fosters the convergence between new inter-
connected devices and old-fashioned social interactions. A
social smart space is a (physical) place where members —
humans and appliances— can interact and exploit the services
provided by the others in a technology-mediated way. Physical
proximity, a key enabler to let the members of a physical
space exploit the “services” provided by others, is used here to
customize the behavior of the smart space and tailor the actual
interactions and provisioning of services. Technologies also
help the different members customize their behavior according
to different identities and exploit them based on habits and
needs.

The paper proposes the use of a Social Proximity Frame-
work (SPF) as the underlying infrastructure for the creation
of social smart spaces where individuals can interact and
cooperate according to physical proximity, and according to
the identifies they want to reveal. Two different versions of
the SPF, which use diverse communication platforms, were
used to demonstrate the key characteristics of the solution
and explain how the SPF can exploit the new connection-
less communication protocols. Both a first assessment and our
industrial partner are positive about the work done.

Our plans for the future comprise the extension of the
functionality provided by the SPF, its porting on different
mobile operating systems, the development of further and more
sophisticated applications on top of it, and also a thorough
assessment by our industrial partner for future commercial
exploitation.

ACKNOWLEDGMENTS

This work has been partially supported by Telecom Italia
S.p.A., Strategy & Innovation / Open Innovation Research,

Joint Open Lab S-Cube. The authors would like to thank
Telecom Italia for the support and help provided throughout
the different phases of the work.

REFERENCES

[1] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device
communications with Wi-Fi Direct: overview and experimentation,”
Wireless Communications, IEEE, vol. 20, no. 3, pp. 96–104, June 2013.

[2] “LTE Direct workshop white paper,” https://www.qualcomm.com/
media/documents/files/lte-direct-whitepaper.pdf, 2012.

[3] T. D. Camacho, M. Foth, and A. Rakotonirainy, “Trainroulette: pro-
moting situated in-train social interaction between passengers.” in
UbiComp (Adjunct Publication), F. Mattern, S. Santini, J. F. Canny,
M. Langheinrich, and J. Rekimoto, Eds. ACM, 2013, pp. 1385–1388.

[4] “A common language for the internet of everything,” https://www.
alljoyn.org/.

[5] “Intel common connectivity framework,” https://software.intel.com/
en-us/ccf, 2014.

[6] D. J. Dubois, Y. Bando, K. Watanabe, and H. Holtzman, “Shair:
Extensible middleware for mobile peer-to-peer resource sharing,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. ACM, 2013, pp. 687–690.

[7] E. Toledano, D. Sawada, A. Lippman, H. Holtzman, and F. Casalegno,
“Cocam: A collaborative content sharing framework based on oppor-
tunistic P2P networking,” in Consumer Communications and Network-
ing Conference (CCNC), 2013 IEEE, Jan 2013, pp. 158–163.

[8] S. B. Mokhtar, L. McNamara, and L. Capra, “A middleware service for
pervasive social networking,” in Proceedings of the International Work-
shop on Middleware for Pervasive Mobile and Embedded Computing.
ACM, 2009, pp. 2:1–2:6.

[9] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot,
“Mobiclique: Middleware for mobile social networking,” in Proceedings
of the 2Nd ACM Workshop on Online Social Networks. ACM, 2009,
pp. 49–54.

[10] M. Basuga, R. Belavic, A. Slipcevic, V. Podobnik, A. Petric, and
I. Lovrek, “The magnet: Agent-based middleware enabling social
networking for mobile users,” in 10th International Conference on
Telecommunications, 2009. ConTEL 2009., June 2009, pp. 89–96.

[11] S. Kern, P. Braun, and W. Rossak, “Mobisoft: An agent-based middle-
ware for social-mobile applications,” in On the Move to Meaningful
Internet Systems 2006: OTM 2006 Workshops. Springer Berlin
Heidelberg, 2006, vol. 4277, pp. 984–993.

[12] D. Brooker, T. Carey, and I. Warren, “Middleware for social networking
on mobile devices,” in 21st Australian Software Engineering Conference
(ASWEC), 2010, April 2010, pp. 202–211.

[13] D. Kalofonos, Z. Antoniou, F. Reynolds, M. Van-Kleek, J. Strauss, and
P. Wisner, “MyNet: A platform for secure P2P personal and social
networking services,” in Sixth Annual IEEE International Conference
on Pervasive Computing and Communications, 2008. PerCom 2008.,
March 2008, pp. 135–146.

[14] A. Gupta, A. Kalra, D. Boston, and C. Borcea, “Mobisoc: a middle-
ware for mobile social computing applications,” Mobile Networks and
Applications, vol. 14, no. 1, pp. 35–52, 2009.

[15] D. Bottazzi, R. Montanari, and A. Toninelli, “Context-aware middleware
for anytime, anywhere social networks,” Intelligent Systems, IEEE,
vol. 22, no. 5, pp. 23–32, Sept 2007.

[16] A. Karam and N. Mohamed, “Middleware for mobile social networks:
A survey,” in 45th Hawaii International Conference on System Science
(HICSS), 2012, Jan 2012, pp. 1482–1490.

[17] “Dbus overview,” https://pythonhosted.org/txdbus/dbus overview.html,
2012.

[18] D. Dubois, Y. Bando, K. Watanabe, and H. Holtzman, “Lightweight
self-organizing reconfiguration of opportunistic infrastructure-mode
WiFi networks,” in IEEE 7th International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), 2013, Sept 2013, pp. 247–256.

[19] C.-J. M. Liang, H. Jin, Y. Yang, L. Zhang, and F. Zhao, “Crossroads:
A framework for developing proximity-based social interactions,” in
Mobiquitous, December 2013.

